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Abstract

Background: The foundation of health and medical research is data. Data sharing facilitates the progress of
research and strengthens science. Data sharing in research is widely discussed in the literature; however, there are
seemingly no evidence-based incentives that promote data sharing.

Methods: A systematic review (registration: doi.org/10.17605/OSF.IO/6PZ5E) of the health and medical research
literature was used to uncover any evidence-based incentives, with pre- and post-empirical data that examined
data sharing rates. We were also interested in quantifying and classifying the number of opinion pieces on the
importance of incentives, the number observational studies that analysed data sharing rates and practices, and
strategies aimed at increasing data sharing rates.

Results: Only one incentive (using open data badges) has been tested in health and medical research that
examined data sharing rates. The number of opinion pieces (n = 85) out-weighed the number of article-testing
strategies (n = 76), and the number of observational studies exceeded them both (n = 106).

Conclusions: Given that data is the foundation of evidence-based health and medical research, it is paradoxical
that there is only one evidence-based incentive to promote data sharing. More well-designed studies are needed in
order to increase the currently low rates of data sharing.
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Rationale
Despite the current shift towards more open data in
health and medical research, there are seemingly no
evidence-based incentives that increase data sharing. As
such, a systematic review was used to verify the lack of
evidence-based incentives in this area.
Objective
This study aims to systematically review the literature to
appraise and synthesise scientific research papers that
concern incentives that have been tested to increase data
sharing in health and medical research.
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Background
Research waste: hidden data, irreproducible research
The foundation of health and medical research is
data—its generation, analysis, re-analysis, verification,
and sharing [1]. Data sharing is a key part of the move-
ment towards science that is open, where data is easily
accessible, intelligible, reproducible, replicable, and veri-
fiable [2]. Data sharing is defined here as making raw re-
search data available in an open data depository, and
includes controlled access where data is made available
upon request which may be required due to legal or
ethical reasons. Despite the wide-scale benefits of data
sharing such as addressing global public health emergen-
cies, it is yet to become common research practice. For
instance, the severe acute respiratory syndrome (SARS)
disease was controlled only 4 months after its emergence
by a World Health Organization-coordinated effort
based on extensive data sharing [3]. Likewise, the
le is distributed under the terms of the Creative Commons Attribution 4.0
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researchers working on the Ebola outbreak have recently
committed to work openly in outbreaks to honour the
memory of their colleagues who died at the forefront of
the Ebola outbreak, and to ensure that no future epi-
demic is as devastating [4]. Notwithstanding these bene-
fits, numerous studies have demonstrated low rates of
data sharing in health and medical research, with the
leading journal the British Medical Journal (BMJ) having
a rate as low as 4.5% [5] and biomedical journal articles
0% [6]. There are of course legitimate reasons to withhold
data, such as the concern about patient privacy, and the
requirement for patient consent for sharing [7].
With 85% of the world’s spending on health and med-

ical research, an estimated $170 billion, wasted every
year, it is clear that the scientific community is in crisis,
leading to questions about the veracity of scientific
knowledge [8]. Data sharing and openness in scientific
research should be fundamental to the philosophy of
how scientific knowledge is generated. Thomas Kuhn in-
troduced the concept of paradigm shifts that arise from
a scientific crisis. The paradigm shift before us today is
from closed, hidden science to open science and data
sharing [9]. Sharing scientific data will allow for data veri-
fication and re-analysis, and for testing new hypotheses.
Open data reduces research waste in terms of time, costs,
and participant burden, and in turn, strengthens scientific
knowledge by ensuring research integrity [5, 10].
The many current problems in health and medical

research have led to the emergence of a new field, meta-
research, which is concerned with improving research
practices [2]. Meta-research has five sub-themes with
‘reproducibility’ and ‘incentives’ as two of the themes [2].
Reproducibility is concerned with the verification of
research findings, which can be achieved through the
sharing of data and methods [2]. Incentives is concerned
with rewarding researchers, which includes incentives to
share their data and methods [2]. We were interested in
how researchers are incentivised to openly share their raw
data, thus combining two sub-themes of meta-research.
Research waste: historical barriers
Historically, it has not been common practice for the
content of a research article to include access to the raw
data from scientific experiments [11]. This flaw, created
by technological limitations among others, has hindered
the progress of scientific knowledge [5]. However, we
can no longer blame technology for outdated research
practices. There are many data depositories which allow
researchers to easily share their data using a citable DOI.
There have also been many recent policies and frame-
works to encourage openness in research [7]. Yet, uptake
in health and medicine is low and what is lacking, it ap-
pears, are rewards that incentivize researchers to share
their data [11]. Incentives are defined here as rewards
that are given to researchers if they participate in sharing
their raw scientific data [12].

Research design and methodology
The Queensland University of Technology (QUT)
Library staff assisted in developing a rigorous and clearly
documented methodology for both the search strategy
and the selection of studies. The aim was to minimise bias
by documenting the search process and the decisions
made to allow the review to be reproduced and updated.
The Cochrane Handbook for Systematic Reviews was

used as a guide for this systematic review: http://hand-
book.cochrane.org/. The EQUATOR Network Additional
file 1: PRISMA (2009) Checklist [13] was used to ensure
good practice as well as accurate reporting.
Three systematic review registries (Prospero, Joanna

Briggs Institute, and Cochrane) were checked to ensure
our proposed systematic review had not already been
done. Our systematic review protocol was registered at
the Open Science Framework on 1 August 2016
(doi.org/10.17605/OSF.IO/6PZ5E).

Inclusion criteria
Types of documents
This review considered published journal articles with
empirical data that trialed any incentive to increase data
sharing in health and medical research.

Types of data
Articles must have tested an incentive that could in-
crease data sharing in health and medical research. For
the purposes of this review, health and medical research
data is defined as any raw data that has been generated
through research from a health and medical facility, in-
stitute or organisation.
Incentives are defined here as ‘a benefit, reward, or

cost that motivates an […] action’. This was based on
the definition of incentives in economics, which groups
incentives into four categories: financial, moral, natural,
and coercive [14].

Types of measures
The review included any paper with empirical data on
sharing that compared an intervention and control,
which used a clear research design (including rando-
mised and non-randomised designs). The types of mea-
sures included are the percent of datasets shared, or the
number of datasets shared, or the relative ratio of data
sharing.

Exclusion Criteria
This review excluded the following, but still classified
these excluded papers by field:

http://handbook.cochrane.org/
http://handbook.cochrane.org/
http://dx.doi.org/10.17605/OSF.IO/6PZ5E
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� all editorial and opinion pieces that only discuss
strategies to increase data sharing without
trialling them.

� strategies that do not involve incentives, e.g.,
education seminars, change in a data sharing
policy or some other policy, access to data
management tools and managers.

� observational studies that describe data sharing
patterns.
Search Strategy
This search strategy was designed to access published ar-
ticles through the following steps:

1) (((“open science” OR “open data” OR “data sharing”)
AND (incentive* OR motivation* OR reward* OR
barrier*)))

2)
b.

tabase Health/
edical

Search

bMed ((“open science” OR “open data” OR “data sharing”)
AND (incentive* OR motivation* OR reward*
OR barrier*))

BASE ((“open science” OR “open data” OR “data sharing”)
AND (incentive* OR motivation* OR reward*
OR barrier*))

NAHL ((“open science” OR “open data” OR “data sharing”)
AND (incentive* OR motivation* OR reward*
OR barrier*))

ulti-disciplinary
tabases

Search

opus ((“open science” OR “open data” OR “data sharing”)
AND (incentive* OR motivation* OR reward*
OR barrier*))

eb of Science ((“open science” OR “open data” OR “data sharing”)
AND (incentive* OR motivation* OR reward*
OR barrier*))
3) Relevant articles that did not appear in the database
search but were known to the reviewers were hand-
picked and extracted into EndNote.
Process of selecting and evaluating articles
Two reviewers, ARF and MA, screened the titles of the
articles and based on the inclusion and exclusion cri-
teria, extracted them into EndNote. Duplicates were
removed.
The reviewers independently screened the extracted

article titles and abstracts based on the inclusion and ex-
clusion criteria and categorised them into five groups:

1) Incentives
2) Other strategies
3) Opinion pieces
4) Observational studies
5) Irrelevant

ARF read the titles and abstracts of all extracted arti-
cles and MA verified her findings by reading a random
sample of 30%. Discrepancies between the two reviewers
were approximately 10%, however these were relatively
minor and resolved through discussion of the scope of
each of the categories. For instance, a research paper
outlined the introduction of a data system, one reviewer
classified it as an observational study, but after discus-
sion it was agreed that it was a strategy article as its
objective was to increase data sharing rates rather than
observing data sharing patterns.

Process of extracting relevant information
The two reviewers independently read eligible documents
and extracted data sharing incentives in health and med-
ical research. Both reviewers were agnostic regarding the
types of incentives to look for. The final list of incentives
was determined and agreed on by all authors [11].

Data synthesis
Individual incentives were grouped into research fields. A
qualitative description of each incentive was presented.
Based on our prior experience of the literature, the re-

search fields and sub-fields for classification were:

a. Health and medical research

i. Psychology
ii. Genetics
iii. Other (health/medical)
Non-health and medical research
i. Information technology
ii. Ecology
iii. Astronomy
iv. Other (non-health/medical)
The other article–strategies, opinion pieces, and obser-
vational studies were also grouped into the same re-
search fields.

Results
The database searches found 1415 articles, 1039 of
which met the inclusion criteria based on assessment of
titles and abstracts and were exported into EndNote.
After automatically removing duplicates, 670 articles
remained and after manually removing the remainder of
the duplicates, 586 articles remained.
586 titles and abstracts were read and categorised

based on the above inclusion and exclusion criteria. One
study was hand-picked as it met the inclusion criteria,
bringing the total number of extracted articles to 587.



Table 1 Categorisation of all screened articles into sub-fields
and article type

Research fields
and sub-fields

Article type

Incentives Strategies Opinion
Pieces

Observational
Studies

Total: field
of studies

Health and Medical Research

Psychology 1 2 4 1 8

Genetics 0 16 12 17 45

Other 0 58 69 88 215

Total: health and
medical research

1 76 85 106 268

Non-Health and Medical Research

Astronomy 0 0 0 1 1

Ecology 0 5 11 8 24

Information
Technology

0 38 26 28 92

Other 0 46 52 87 185

Total: non-health
and medical
research

0 89 89 124 302

Total: type
of studies

1 149 174 230 570
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After screening titles and abstracts, nine articles were clas-
sified under incentives in health and medical research.
These articles were then read in full, and one of them was
judged as an incentive that satisfied the inclusion criteria.
The PRISMA [13] flow chart that outlines the journey

of the articles from identification to inclusion is in Fig. 1.
The categorisation of all 587 articles into the sub-fields
and article type is in Table 1.
A review of the reference list for the one included

intervention was undertaken [15]. The titles and ab-
stracts of the full reference list of this study (23 papers)
and those that cited the study (5 papers) were read, but
none met the inclusion criteria of this systematic review.
17 articles were irrelevant, bringing the total number

of screened articles to 570. The distribution of articles
across type of study was similar for both health and
medical research and non-health and medical research
(Table 1). Observational studies were the most common
type (n = 106, n = 124), then opinion pieces (n = 85, n =
89), then articles testing strategies (n = 76, n = 89), and
articles testing incentives were uncommon (n = 1, n = 0).

Observational studies about data sharing in health and
medical research
These articles did not fit the inclusion criteria, but based
on the abstracts they were mostly concerned with ob-
serving data sharing patterns in the health and medical re-
search community, using quantitative and qualitative
Fig. 1 PRISMA [13] Flow Chart: systematic selection of studies that have te
research from the literature
methods. The motivation behind these studies was often
to identify the barriers and benefits to data sharing in
health and medical research. For instance, Federer et al.
(2015) conducted a survey to investigate the differences in
experiences with and perceptions about sharing data, as
sted incentives to increase data sharing rates in health and medical
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well as barriers to sharing among clinical and basic science
researchers [16].

Opinion pieces about data sharing in health and medical
research
These articles also did not fit the inclusion criteria, but
based on the abstracts they were opinion and editorial
pieces that discussed the importance and benefits of data
sharing and also outlined the lack of incentives for re-
searchers to share data.

Main results: incentives in health and medical research
Badges
Open data and open material badges were created by
the Center of Open Science and were tested at the jour-
nal Psychological Science [15]. In January 2014, the jour-
nal adopted badges to acknowledge open data, open
materials and preregistration of research if published
[15]. A Badges Committee at the Centre of Open Sci-
ence outlined what it meant to have ‘open data’ and
‘open materials’ and the journal editorial team awarded
badges to those authors who voluntarily applied for
them upon article acceptance and proved that they met
the criteria [15]. The criteria to earn an open data or
open materials badge involved making all digitally shar-
able data and materials available in an open data reposi-
tory [15]. Badges greatly increased the reported open
data rate at the journal from 1.5% in the first half of
2012 (start point) to 39.4% in the first half of 2015 (end
point) [15].

Limitations
A limitation of the badge study was that it did not use a
randomized parallel group design; notwithstanding, it
was the only incentive that was tested in the health and
medical research community, with pre- and post-
incentive empirical data [15]. The pre- and post-design
of the study makes it vulnerable to other policy changes
over time, such as a change from a government funding
agency like the recent Statement on Data Sharing from
the Australian National Health and Medical Research
Council [17]. However, the Kidwell et al. study addressed
this concern with contemporary control journals. A
limitation of the badge scheme was that even with
badges, the accessibility, correctness, usability, and com-
pleteness of the shared data and materials was not 100%,
which was attributable to gaps in specifications for earn-
ing badges. In late 2015, the Center for Open Science
Badges Committee considered provisions for situations
in which the data or materials for which a badge was
issued somehow disappear from public view and how
adherence to badge specifications can be improved by
providing easy procedures for editors/journal staff to
validate data and material availability before issuing a
badge, and by providing community guidelines for valid-
ation and enforcement [15].

Incentives in non-health and medical research
Of the non-health/medical incentives, seven were cate-
gorised as information technology, and nine as other.
Upon reading the full text, all the 16 non-health/medical
incentives were proposed incentives or strategies as op-
posed to tested incentives with comparative data.

Strategies to increase data sharing in health and medical
research
Given that the systematic review found only one incentive,
we classified the data sharing strategies tested in the health
and medical research community. Seventy-six articles were
classified under ‘strategies’ and Table 2 shows the further
classification into categories based on a secondary screen-
ing of titles and abstracts. The articles are grouped by
whether they presented any data, descriptive, or empirical.
The majority, 57/76, of strategies were technological

strategies such as the introduction of a data system to
manage and store scientific data. Seven of the 76 strat-
egies concerned encouraging collaboration among re-
search bodies to increase data sharing. Eight were a
combination of collaboration across consortia and the
introduction of a technological system. Three had a data
sharing policy as the strategy but did not test the effect-
iveness of the policy, but two of them reported descrip-
tive data from their experience in implementing the
policy. One strategy was an open data campaign.
Below we give some examples of the strategies used to

promote data sharing.

Strategies in health and medical research: data systems
Dataset linkage—attribution
Two articles discussed an incentive system for human
genomic data and data from rare diseases, namely, micro-
attribution and nanopublication—the linkage of data to
their contributors. However, the articles only discussed
the models and did not present empirical data [18, 19].
Another article discussed the OpenfMRI project that

aims to provide the neuroimaging community with a re-
source to support open sharing of fMRI data [20]. In 2013,
the OpenfMRI database had 18 full datasets from seven dif-
ferent laboratories and in October 2016, the database had
55 datasets openly available (https://openfmri.org/dataset/).
The authors identified credit as a barrier towards sharing
data and so incorporated attribution into the OpenfMRI
website where a dataset is linked to the publication and the
list of investigators involved in collecting the data [20].

Electronic laboratory notebooks
An article discussed open source drug discovery and
outlined its experience with two projects, the

https://openfmri.org/dataset/


Table 2 Categorisation of the 76 data sharing strategy articles

Sub-theme of health and medical research Category (numbers) Empirical or descriptive data None or little empirical
or descriptive data

Psychology Data system
(2)

2[33, 34]

Genetics Data system (14) 12[19, 35–45] 2[46, 47]

Collaboration and data system (1) 1[25]

Collaboration (1) 1[48]

Other (health and medical research) Data system (41) 35 [19–21, 49–80] 6 [81–86]

Collaboration and data system (7) 7 [22, 23, 87–91]

Collaboration (6) 3[24, 92, 93] 3 [94–96]

Policy
(3)

2[26, 97] 1[98]

Campaign
(1)

1[27]
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praziquantel (PZG) project and the Open Source
Malaria project [21]. The article did not have pre- and
post-strategy data. The authors discussed the constituent
elements of an open research approach to drug discov-
ery, such as the introduction of an electronic lab note-
book that allows the deposition of all primary data as
well as data management and coordination tools that en-
hances community input [21]. The article describes the
benefits and successes of the open projects and outlines
how their uptake needs to be incentivised in the scien-
tific community [21].

Strategies in health and medical research: collaboration
and data system
An article discussed the development of the Collabora-
tory for MS3D (C-MS3D), an integrated knowledge en-
vironment that unites structural biologists working in
the area of mass spectrometric-based methods for the
analysis of tertiary and quaternary macromolecular
structures (MS3D) [22]. C-MS3D is a web-portal
designed to provide collaborators with a shared work
environment that integrates data storage and manage-
ment with data analysis tools [22]. The goal is not only
to provide a common data sharing and archiving sys-
tem, but also to assist in the building of new collabora-
tions and to spur the development of new tools and
technologies [22].

Attribution
One article outlined the collaborative efforts of the
Global Alzheimer’s Association Interactive Network
(GAAIN) to consolidate the efforts of independent Alz-
heimer’s disease data repositories around the world with
the goals of revealing more insights into the causes of
Alzheimer’s disease, improving treatments, and design-
ing preventative measures that delay the onset of phys-
ical symptoms [23]. In 2016, they had registered 55 data
repositories from around the world with over 25,000
subjects using GAAIN’s search interfaces [23]. The
methodology employed by GAAIN to motivate partici-
pants to voluntarily join its federation is by providing
incentives: data collected by its data partners are adver-
tised, as well as the identity of the data partners, includ-
ing their logos and URL links, on each GAAIN search
page [23]. GAIIN attributes its success in registering 55
data repositories to date to these incentives which pro-
vide opportunities for groups to increase their public
visibility while retaining control of their data, making
the relationship between GAIIN and its partners mutu-
ally beneficial [23]. This study did not have pre- and
post-strategy empirical data, but described the import-
ance of incentives in motivating researchers to share
their data with others [23].

Strategies in health and medical research: collaboration
An article described how data sharing in computational
neuroscience was fostered through a collaborative work-
shop that brought together experimental and theoretical
neuroscientists, computer scientists, legal experts, and
governmental observers [24]. This workshop guided the
development of new funding to support data sharing in
computational neuroscience, and considered a concep-
tual framework that would direct the data sharing move-
ment in computational neuroscience [24]. The workshop
also unveiled the impediments to data sharing and out-
lined the lack of an established mechanism to provide
credit for data sharing as a concern [24]. A recommen-
dation was that dataset usage statistics and other user
feedback be used as important measures of credit [24].
One article addressed the need to facilitate a culture of

responsible and effective sharing of cancer genome data
through the establishment of the Global Alliance for
Genomic Health (GA4GH) in 2013 [25]. The collabora-
tive body unpacked the challenges with sharing cancer
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genomic data as well as the potential solutions [25]. The
GA4GH developed an ethical and legal framework for
action with the successful fostering of an international
‘coalition of the willing’ to deliver a powerful, globally
accessible clinic-genomic platform that supports data-
driven advances for patients and societies [25].

Strategies in health and medical research: policy
An article discussed the efforts of the Wellcome Trust
Sanger Institute to develop and implement an institute-
wide data sharing policy [26]. The article outlined that
successful policy implementation depends on working
out detailed requirements (guidance), devoting efforts
and resources to alleviate disincentives (facilitation),
instituting monitoring processes (oversight), and leadership
[26]. The topic of disincentives (facilitation) included
concerns about lack of credit [26]. They propose that
cultural barriers to data sharing continue to exist and that
it is important to align the reward system to ensure that
scientists sharing data are acknowledged/cited and that
data sharing is credited in research assessment exercises
and grant career reviews [26].

Strategies in health and medical research: campaign
One intervention was an open data campaign which
was included in the review via an open letter in June
2014 from the AllTrials campaign to the director of the
European Medicines Agency to remove barriers to
accessing clinical trial data [27]. The AllTrials cam-
paign is supported by more than 78,000 people and 470
organisations worldwide [27]. This letter contributed to
the European Medicines Agency publishing the clinical
reports underpinning market authorization requests for
new drugs, which was part of a more proactive policy
on transparency that applied to all centralized market-
ing authorisations submitted after 1 January 2015 [27].
The adoption of this policy was a significant step in en-
suring transparency of health and medical research in
Europe [27].

Discussion
This systematic review verified that there are few
evidence-based incentives for data sharing in health and
medical research. The irony is that we live in an
evidence-based world, which is built upon the availabil-
ity of raw data, but we hardly have any evidence to dem-
onstrate what will motivate researchers to share data. To
date, open data badges are the only tested incentive.
Badges are an effective signal and incentive for open
practices and journals can offer them to authors who are
willing and able to meet criteria to earn an open data
and open material badge [15].
It is interesting to note the great number of opinion

pieces (n = 85) on the importance of developing
incentives for researchers, which outnumbered the num-
ber of articles that tested strategies to increase data shar-
ing rates (n = 76). ‘Opinion pieces’ are mutually exclusive
from ‘strategies’ as the former is concerned with discuss-
ing possible strategies and incentives and the latter tests
the ideas and strategies and provides evidence of what
works or does not work. These strategies included: the
introduction of data systems such as electronic labora-
tory notebooks and databases for data deposition that
incorporated a system of credit through data linkage;
collaboration across consortia that also introduce data
systems that also use data attribution as an incentive;
collaboration across consortia through workshops and
development of frameworks for data sharing; implemen-
tation of data sharing policies; and campaigns to pro-
mote data sharing. These strategies discussed the
requirement of introducing rewards to increase data
sharing rates and the only form of incentive used was
via data attribution and advertising on websites. Studies
that test the effectiveness of attribution and advertising
as a form of credit are necessary.
In light of the small number of studies, we see a clear

need for studies to design and test incentives that would
motivate researchers to share data. Organisations are
promoting the development of incentives to reduce
research waste. In late 2016, the Cochrane and the
REWARD alliance combined to create the annual
Cochrane-REWARD prize for reducing waste in re-
search. The monetary prize is awarded to ‘any person or
organisation that has tested and implemented strategies
to reduce waste in one of the five stages of research pro-
duction [question selection, study design, research con-
duct, publication, and reporting] in the area of health’.
This prize is an example of an incentive for researchers
to design studies or implement policies that reduce re-
search waste; it will be interesting to see the impact of
this initiative [28].
Another endeavour in the area of developing incen-

tives and rewards for researchers is the convening in
early 2017 of a group of leaders from the USA and
Europe from academia, government, journals, funders,
and the press to help develop new models for academic
promotion and professional incentives that would pro-
mote the highest quality science, organised by the
Meta-Research Innovation Center at Stanford (MET-
RICS). The focus will be on designing practical actions
that embody principles that this community has em-
braced, while also recognizing that the effect of any
such policies will need empirical evaluation.
While the systematic barriers to widespread data shar-

ing are being addressed through the general shift to-
wards more openness in research, the conversation on
data sharing includes an alternative view where users of
shared data are called ‘research parasites’ who ‘steal from
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research productivity’ and who are ‘taking over’ [29, 30].
There is also some questioning of whether data sharing
is worth the effort [30]. These points, however, are con-
trary to the purpose of sharing data, which is to progress
science as a body of knowledge and to make the re-
search process more robust and verifiable [5, 30].

Limitations
A limitation of this systematic review is that we did
not search the grey literature (materials and re-
search produced by organizations outside of the
traditional commercial or academic publishing and
distribution channels). This review could be per-
ceived as having a narrow design, given that we an-
ticipated a lack of evidence-based incentives for data
sharing in health and medical research, hence mak-
ing the topic of this systematic review too simple.
However, we could not be sure that there were no
incentives and the recent paper by Lund and col-
leagues (2016) emphasises the importance of con-
ducting systematic reviews prior to designing
interventions in order to avoid adding to the already
large issue of research waste [31].

Conclusions
The current meta-research discourse outlines the nu-
merous benefits of openness in research: verification of
research findings, progressing health and medicine,
gaining new insights from re-analyses, reducing re-
search waste, increasing research value, and promoting
research transparency. However, this systematic review
of the literature has uncovered a lack of evidence-
based incentives for researchers to share data, which is
ironic in an evidence-based world. The open data
badge is the only tested incentive that motivated re-
searchers to share data [15]. This low-cost incentive
could be adopted by journals and added to the reward
system to promote reproducible and sharable research
[15, 32]. Other incentives like attribution require em-
pirical data. Instead of evidence-based incentives, the
literature is full of opinion pieces that emphasize the
lack of incentives for researchers to share data, out-
weighing the number of strategies that aim to increase
data sharing rates in health and medicine. Observa-
tional studies that identify data sharing patterns and
barriers are also plentiful, and whilst these studies can
provide useful background knowledge, they do not pro-
vide good evidence of what can be done to increase
data sharing.
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