
REVIEW Open Access

Publishing computational research - a
review of infrastructures for reproducible
and transparent scholarly communication
Markus Konkol* , Daniel Nüst and Laura Goulier

Abstract

Background: The trend toward open science increases the pressure on authors to provide access to the source
code and data they used to compute the results reported in their scientific papers. Since sharing materials
reproducibly is challenging, several projects have developed solutions to support the release of executable analyses
alongside articles.

Methods: We reviewed 11 applications that can assist researchers in adhering to reproducibility principles. The
applications were found through a literature search and interactions with the reproducible research community. An
application was included in our analysis if it (i) was actively maintained at the time the data for this paper was
collected, (ii) supports the publication of executable code and data, (iii) is connected to the scholarly publication
process. By investigating the software documentation and published articles, we compared the applications across
19 criteria, such as deployment options and features that support authors in creating and readers in studying
executable papers.

Results: From the 11 applications, eight allow publishers to self-host the system for free, whereas three provide
paid services. Authors can submit an executable analysis using Jupyter Notebooks or R Markdown documents (10
applications support these formats). All approaches provide features to assist readers in studying the materials, e.g.,
one-click reproducible results or tools for manipulating the analysis parameters. Six applications allow for modifying
materials after publication.

Conclusions: The applications support authors to publish reproducible research predominantly with literate
programming. Concerning readers, most applications provide user interfaces to inspect and manipulate the
computational analysis. The next step is to investigate the gaps identified in this review, such as the costs
publishers have to expect when hosting an application, the consideration of sensitive data, and impacts on the
review process.

Keywords: Open reproducible research, Open science, Computational statistics, Scholarly communication

Background
In many scientific fields, the results of scientific articles
can be based on computations, e.g., a statistical analysis
implemented in R. For this type of research, publishing
the used source code and data to adhere to “open

reproducible research” (ORR) principles (i.e., public ac-
cess to the code and data underlying the reported results
[1]) seems simple. Nevertheless, several studies have
concluded that papers rarely include or link to these ma-
terials [2, 3]. Reasons for that are manifold:
First, due to technical challenges, e.g., capturing the

analyst’s original computational environment, even

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: m.konkol@uni-muenster.de
Institute for Geoinformatics, University of Münster, Münster, Germany

Research Integrity and
 Peer Review

Konkol et al. Research Integrity and Peer Review (2020) 5:10
https://doi.org/10.1186/s41073-020-00095-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s41073-020-00095-y&domain=pdf
http://orcid.org/0000-0001-6651-0976
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:m.konkol@uni-muenster.de

having accessible materials does not guarantee that re-
sults can be reproduced [4, 5]. Second, many authors
hesitate to share their work because publishing errone-
ous papers can damage an author’s reputation [6] as
well as trust in science [7]. These perspectives, however,
overlook the fact that engaging in open practices offers
some career advantages [8, 9] and can help in identifying
and correcting mistakes [10, 11].
As a result of authors not including their source code

and underlying data, several further problems arise. For
example, reviewers cannot verify the results, because with-
out the code, they are required to understand the analysis
just by reading the text [12]. Hence, finding errors in re-
sults is difficult and often impossible [6], raising the ques-
tion of whether the traditional research article is suitable
for conveying a complex computational analysis [13].
Additionally, other researchers working in similar areas
cannot continue building on existing work but have to col-
lect data and implement the analysis from scratch [14]. All
these issues are also to society’s disadvantage, as the public
cannot benefit fully from publicly funded research [15].
Funding agencies, e.g., Horizon 2020, are increasingly

requiring data and software management plans as part of
grant proposals. Accordingly, more journal editors are
starting to make sure that author guidelines include a sec-
tion on code and data availability [16, 17], and reviewers
are now considering reproducibility in their decision pro-
cesses [10]. Moreover, concepts and tools to package code,
the computing environment, data, and the text of a re-
search workflow (a so-called “Research Compendium”
[18]) are becoming more advanced and applied. This form
of publishing research allows reviewers to verify the re-
ported results and readers to reuse the materials [19].
Nevertheless, neither the cultural and systematic de-

velopments [20] for ORR nor the existence of technolo-
gies for packaging research reproducibly can alone solve
the plethora of reproducibility issues. Authors often do
not know how to fulfill the requirements of funding
bodies and journals, such as the Transparency and
Openness Promotion (TOP) guidelines [21], or they do
not have the programming skills. It is important to con-
sider that the range of researchers’ programming expert-
ise varies from trained research software engineers to
self-taught beginners. For these reasons, more and more
applications have been created to support the publica-
tion of executable computational research for transpar-
ent and reproducible research. This paper aims at
reviewing these applications in order to help researchers
find the application that best suits their individual needs.

Methods
Study design
In this review study, we surveyed and compared 11 ap-
plications that assist authors in publishing reproducible

research. The goal of the review was to obtain an overview
of the benefits and limitations of these applications con-
sidering the challenges outlined in the previous section.
We contrasted the solutions to create a set of criteria that
addresses the needs of the stakeholders involved in the
scholarly publication process, i.e. publishers, editors, au-
thors, readers/reviewers, and librarians [22].

Sample
We identified the applications during a literature search
as well as through discussions at conferences1 and work-
shops.2 We included an application in our analysis if it
(i) was actively maintained at the time the data for this
paper was collected (5th–13th Dec 20193), (ii) supports
publishing executable code and data that can be
inspected and reused, and (iii) is explicitly connected to
the publication process. Hence, we did not consider
technologies (e.g., containerization) that alone cannot
support the publication process of code because further
infrastructure is needed, systems that only provide ac-
cess to materials (e.g., Zenodo), or workflow systems
(e.g., Taverna [23]). Based on the sample criteria, we se-
lected the following eleven applications for the review,
presented in alphabetical order (see Table 1).

Variables
In a next step, we reviewed literature to identify a set of
comparison criteria (highlighted in bold in the following)
relevant for the stakeholders mentioned above. Accord-
ing to Hrynaszkiewicz [17], publishers refrain from host-
ing data, raising the question of whether the applications
allow (1) “free self-hosting” by the publishers. Since self-
hosting might require changes to the software, we also
checked whether the applications are released under an
(2) “open license”. Next, a proxy for assessing the stage
and the reliability of an application is to check whether
it is already (3) “in use”. To provide an initial estimate of
the application’s longevity, we looked up whether the ap-
plications are (4) “grant-based”, since such funds are
usually temporary. Also, because using literate program-
ming tools is a frequently mentioned recommendation
for creating executable documents [35], we checked
whether the applications support (5) “R Markdown” and
(6) “Jupyter Notebooks”. However, since researchers
might have individual requirements [22], we also

1One conference we attended: EGU General Assembly 2019 (last
access of this and the following URLs: 22nd May 2020); it also had a
session on open science.
2Workshop: eLife innovation sprint 2019, which brought together
people interested in open science.
3A reviewer directed us to the application Authorea, which we missed
in our first analysis, and the lack of pricing information. We thus
collected data to address these aspects on 22nd May 2020

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 2 of 8

https://www.egu2019.eu/
https://meetingorganizer.copernicus.org/EGU2019/session/30778
https://elifesciences.org/labs/d13e1547/innovation-sprint-2019-project-roundup

investigated whether the applications are (7) “extensible”,
meaning, for example, whether users can add a new sub-
mission format. A further relevant piece of information
for authors is whether they need to (8) “upload” their
materials to the application and whether (9) “copyright”
is addressed explicitly in the documentation. Copyright
is a main concern of authors in the context of ORR [36]
and needs to be considered when it comes to reusing re-
search materials [37]. We also checked whether (10)
“sensitive data” can be shared. Based on the benefits of
ORR summarized by Konkol et al. [36], we checked
whether the applications provide tools to enable the (11)
“discovery” of articles, (12) “inspection” of the materials,
(13) “execution” of the analyses (one-click reproducible),
(14) “manipulation” of parameter values, (15) “substitu-
tion” of datasets, and (16) “download” of materials. Fi-
nally, papers describing open science guidelines [21] or
assessing reproducibility of published papers [3] often
refer to the importance of making materials permanently
available, for example, for future use and education [38].
Hence, we investigated whether it is possible to (17)
“modify or delete materials after publication” and
whether these materials can be (18) “shared via a DOI”
or (19) “shared via a URL”.

Data collection
Based on the comparison criteria, two authors collected
information iteratively by investigating the project web-
sites, applications, GitHub/Lab repositories, scientific ar-
ticles, and blog posts. In the first iteration, one author of
this paper gathered information on the applications one
by one and took screenshots. In the second iteration, an-
other author independently checked the information col-
lected in the first iteration. Conflicts concerning the data
were resolved through discussion amongst all authors.
In order to give the scientific community, particularly
the developers of the considered applications, the oppor-
tunity to comment on the analysis, we published a pre-
print [39] of the paper three months before submission.
All collected data is available in the supplement (see
Availability of data and materials). Thus, it is possible to
continue the work in this paper as a “rolling review”.
Since some sources (e.g., documentation) were not sci-
entific articles, we also attached links to and screenshots
of the original information.

Results
Table 2 summarizes aspects relevant for publishers, edi-
tors, authors, readers, and librarians.

Table 1 Overview of applications we included in the analysis

Application Description

Authorea In Authorea, authors can create executable papers collaboratively. They can attach code and data to figures to
make them reproducible. Authors can also directly submit to a journal and, at the same time, publish a preprint.

Binder Binder creates a containerized executable environment based on a repository (e.g., on GitHub/Lab, Zenodo)
including a Jupyter Notebook [24]. Readers can launch the analysis and inspect the workflow in a browser.

Code Ocean Code Ocean creates “capsules” containing code, data, and the computational environment. While reading, users
can execute and inspect the analysis in a separate window below the article or on Code Ocean’s website [25].

eLife Reproducible Document
Stack (RDS)

RDS originates from the life sciences. Authors can publish executable documents based on Stencila (https://stenci.
la/), an open-source editor for articles. The executable document, which contains the whole narrative and execut-
able code snippets, is not only a supplement but the actual scientific article.

Galaxy Galaxy [26] provides features tailored to use cases in the life sciences. It is a web app for developing comput.
Analyses without programming expertise. Scientists can upload and analyze data using Jupyter Notebooks [27].

Gigantum Gigantum packages code, data, the computational environment, and the work history into a Git repository.
Gigantum is composed of a client app for creating as well as executing analyses locally and a cloud-based infra-
structure for sharing computations and collaborating with peers.

Manuscripts Manuscripts is an online tool for writing executable documents collaboratively based on the concept of literate
programming, but featuring a “What you see is what you get” user interface. The runtime environment of the
author is, however, not considered.

o2r o2r [22] originates from the geosciences and addresses publishers who want to extend their infrastructure via a
reproducibility service during the process of paper submission [28]. Authors can create interactive figures, allowing
readers to change model parameters using a slider [29].

REANA REANA [4, 30] originates from particle physics and provides a specification for capturing data, code, and the
comput. Environment. Based on this structure and manually created configuration files, REANA provides command
line interface (CLI) commands to run large analyses on a remote REANA cloud.

ReproZip ReproZip [31, 32] provides a set of CLI commands for encapsulating data, code, and the computational
environment. Users can execute the resulting bundle on a server provided by ReproZip [33] or locally on different
systems.

Whole Tale With Whole Tale [34], authors can create so-called “Tales” that combine narrative, data, code, and the computational
environment. Readers can inspect the materials and execute the analysis in the original environment.

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 3 of 8

https://www.authorea.com/
https://mybinder.org/
https://codeocean.com/
https://elifesciences.org/labs/b521cf4d/reproducible-document-stack-towards-a-scalable-solution-for-reproducible-articles
https://elifesciences.org/labs/b521cf4d/reproducible-document-stack-towards-a-scalable-solution-for-reproducible-articles
https://stenci.la/
https://stenci.la/
https://galaxyproject.org/
https://gigantum.com/
https://www.manuscripts.io/about/
https://o2r.info/
http://reanahub.io/
https://www.reprozip.org/
https://wholetale.org/

From the eleven applications, eight allow self-hosting
for free. eLife RDS and REANA (in Table 2 marked by *)
require deployment, since no free online version exists.
Eight applications are released under an open license,
and Gigantum has only published the client tool under
an open license. The open source applications that have
an online version running can be used by researchers for
free. The three commercial providers, namely Authorea,
Code Ocean, and Gigantum, provide the service in ex-
change for payment but they also offer free subscriptions
with limited features and resources (i.e. storage and
computation time).
In total, seven applications are already in use, as

shown by the example papers with reproducible work-
flows. Seven applications currently receive funding from
public or private organizations.4

Ten applications support literate programming, e.g., R
Markdown or Jupyter Notebooks; the Manuscripts appli-
cation supports Markdown but also code execution via
embedded Jupyter Notebooks. Seven applications are ex-
tensible and can be configured to support further pro-
gramming languages. Except for Code Ocean, which also

supports MATLAB and Stata, all applications only sup-
port non-proprietary programming languages.
Seven applications require authors to create their pro-

jects online, whereas eLife’s RDS (based on Stencila),
REANA, and ReproZip allow local usage. Researchers
can also work locally with Gigantum, but they then need
to synchronize with the online service to access all
features.
Regarding copyright, we could not find explicit infor-

mation on assigning copyright for research materials in
five applications. Whole Tale and Gigantum only allow
open licenses, whereas Code Ocean, Galaxy, and o2r en-
courage them. We could not find information on sensi-
tive data in any of the applications.
From the eleven applications, six provide a keyword-

based search for papers, of which o2r provides a spatio-
temporal search combined with thematic properties,
such as libraries used in the code. Five applications
embed a programming environment (e.g., JupyterLab,
RStudio) for inspecting code and data, whereas four pro-
vide their own user interface (UI).
All applications provide support for executing the ana-

lysis. REANA projects are executed via the CLI in a re-
mote REANA cloud, and this also applies to ReproZip,
which in addition to a remote cloud also provides a

Table 2 Overview of which application supports the corresponding criteria. (N/D = no data)

Authorea Binder Code
Ocean

eLife
RDS

Galaxy Gigantum Manuscripts o2r REANA Repro Zip Whole
Tale

Free self-hosting – + – +* + – + + +* + +

Open license – + – + + +/− + + + + +

In use in use
[40]

in use
[2]

in use [41] in use
[42]

in use
[43]

– – – in use
[44]

in use
[31]

–

Grant-based – + – + + – N/D + + + +

R Markdown – + + + – + – + – – +

Jupyter Notebooks + + + + + + – – + + +

Extensible – + + + + – – – + + +

Upload + + + – + – + + – – +

Copyright + N/D + N/D + + N/D + N/D N/D +

Sensitive data – – – – – – – – – – –

Discovery + – + + + – – + – – +

Inspection + + + + + + + + – – +

Execution + + + + + + + + + + +

Manipulation + + + + + + + + + + +

Substitution – – – – – – – + – + –

Download + + + + + + + + – + +

Modify/Delete after
publishing

– + – – + + + – + + –

Shared via DOI + – + + – – – – – – +

Shared via URL + + + + + + + + – + –

4Further details on funding are available in the supplement.

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 4 of 8

ReproServer for executing code online. Gigantum’s local
client allows users to run code in the browser. The
remaining applications allow users to execute the ana-
lysis in a browser on a remote server.
Each application allows users to manipulate the code

and rerun it based on a new parameter. Most commonly,
users can directly manipulate the code in the browser (8
applications provide this option). In REANA and Repro-
Zip, users can pass new parameter values via the CLI,
whereas the o2r platform enables authors to configure
UI widgets that allow reviewers/readers to manipulate
parameter values interactively, e.g., by using a slider to
change a model parameter within a defined range. Fea-
tures for substituting the input datasets used in an ana-
lysis are provided by o2r and ReproZip.
While ten applications provide a feature for download-

ing materials, REANA projects need to be stored on a
third-party service to be downloadable.
Overall, six applications allow users to modify/delete

materials after publication. In Binder, REANA, and
ReproZip, modifying/deleting content is possible if the
research materials are stored on GitHub/Lab, but not
when they are stored on Zenodo. Authorea, Code
Ocean, eLife RDS, and Whole Tale assign DOIs to pub-
lished content, ensuring long-term availability and mak-
ing it impossible to edit these after publication. In eLife’s
RDS, the article is composed of text and code; thus, de-
leting it is equivalent to withdrawing a paper.

Discussion
Several developers have created applications for publish-
ing computational research. One might think the appli-
cations, since they all strive for the same overall goal,
resemble each other. However, we showed in this paper
that the applications address different issues and needs,
which increases the chances that stakeholders will find
an application that best suits their individual require-
ments. The review can be used by the various stake-
holders in different ways: Publishers who want to
comply with reproducibility principles may use it to de-
cide for a certain application, editors and program com-
mittees may use it when planning to include code review
in their review process [45], applicants designing data
and software management plans may use it when writing
their funding proposals, and authors who are searching
for tools to disseminate their work in a convincing, sus-
tainable, and transparent manner may also find it valu-
able. In addition to these stakeholders, we also
considered librarians, who are tasked with aspects re-
lated to the preservation and long-term accessibility of
research materials. Given the variety of the stakeholders
and their considerations, it is difficult to determine the
best application or objectively provide a ranking.

Identifying the ideal application strongly depends on the
needs and goals of the stakeholders.

Hosting of the applications
Publishers need to decide whether they want to host an
infrastructure by themselves or engage a provider. Appli-
cations exist for both approaches, though the majority of
them can be self-hosted. Some of the self-hosting solu-
tions are also available as online versions, but it should
be considered that these have limited resources regard-
ing storage and processing power. Moreover, it is diffi-
cult to estimate when the projects will expire. If the
applications are grant-based, they might receive follow-
up funding, but this depends on the projects’ success
and whether they aim at carrying out research (which
might come with many changes to the software) or de-
veloping a scalable and sustainable platform. As public
information on all funding levels and grant durations are
too uncertain and incomplete to be included in the ana-
lysis, we refrained from drawing concrete conclusions in
terms of longevity and how likely they will exist in the
next years.
All self-hosting solutions have an open license, allow-

ing operators to host their own service as well as modify
the software according to their individual needs and
styles. A further advantage of self-hosting is the mitiga-
tion of risks regarding vendor lock-in. However, hosting
one’s own service means that publishers also have to
provide the required technological resources and
personnel. It remains unclear what kinds of costs pub-
lishers will have to expect when hosting a platform and
incorporating it into their publishing infrastructure. The
final costs strongly depend on the number of views, exe-
cution attempts, workflow sizes, and ease of integration
into technical systems. These parameters differ between
use cases and could be used as measures for future re-
search, e.g., on stress tests. Therefore, the metrics of
existing publications might provide the first ways to cal-
culate the required resources. While the Binder instance
MyBinder.org published an initial estimate regarding
costs,5 further data from other services would help to
calculate costs more specifically. Moreover, it would be
interesting to see usage statistics showing how often the
services are used, for example, by authors, readers, and
reviewers, albeit this transparency is only realistic for
non-profit projects. Nevertheless, since reproducibility
studies are rarely successful [5], using these services
seems to be uncommon.
A further criterion we investigated was whether the

applications are in use. While applications in use offer
initial evidence that they work, it might take more effort

5MyBinder costs: https://mybinder.org/v2/gh/jupyterhub/binder-
billing/master?urlpath=lab/tree/analyze_data.ipynb

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 5 of 8

http://mybinder.org
https://mybinder.org/v2/gh/jupyterhub/binder-billing/master?urlpath=lab/tree/analyze_data.ipynb
https://mybinder.org/v2/gh/jupyterhub/binder-billing/master?urlpath=lab/tree/analyze_data.ipynb

to adjust them to fit a publisher’s infrastructure. In con-
trast, beta applications can adjust their features without
worrying about running instances and backwards com-
patibility, but the deployment of such applications might
reveal new issues.

Creating executable analyses
Regarding submission formats, there is a trend toward
literate programming approaches. Most applications ei-
ther support Jupyter Notebooks or R Markdown, which
both have proven to support reproducibility [46]. How-
ever, some journals and publishers rely on different for-
mats, e.g., LaTeX. Transformations to other document
types are often cumbersome and adapting author re-
quirements can be a lengthy process. Hence, it might be
easier to have reproducible documents as a supplement,
potentially for a transition period, until researchers have
adjusted their workflows and executable documents are
widely accepted. Nevertheless, eLife’s RDS has already
shown that combining executable code with narrative in
a scientific article is possible today and comes with ad-
vantages related to communicating scientific results. For
example, readers can, while studying the text, also ma-
nipulate the analysis. A limitation in this context is re-
lated to the peer-review process. All applications require
an account for creating reproducible results, and since
the name of the creator is usually visible, a double-blind
review is not guaranteed. However, access to code
and data is particularly important for reviewers who
need to recommend acceptance or rejection of a sub-
mission. One solution might be to create anonymous
versions of the materials, as is possible with Open
Science Framework,6 or to adopt an open peer-review
process.
A further critical issue is that not all applications

address copyright in their documentation. Those that
do either require or encourage open licenses, which is
a recommendation mentioned frequently in papers
discussing reproducibility guidelines [21, 37]. Hence,
the platforms should inform users about licenses, e.g.,
by referring to existing advising resources (e.g.,
https://choosealicense.com/). Licensing is important to
enable reusability and, thus, is ideally assigned to
code, data, and text separately, as is done, for ex-
ample, by Authorea. Computational reproducibility is
challenging also because of sensitive data. None of
the applications address this issue, but platforms
allowing self-hosting can be combined with existing
solutions, such as involving trustworthy authorities
[47] and cloud-based data enclaves [48].

Studying reproducible research
Being able to reproduce the computational results in a
paper is a clear benefit, but open reproducible research
comes with a number of further incentives [20]. Con-
cerning the discovery of papers, most search tools pro-
vided by the applications do not take full advantage of
the information contained in code and data files, e.g.,
spatiotemporal properties. Instead, they either only pro-
vide a keyword-based search or no search at all. For
inspecting materials, most solutions either provide their
own UI or integrate a development environment, e.g.,
JupyterLab. In both cases, users can directly access, ma-
nipulate, and reuse the code. However, readers (includ-
ing experienced programmers) might still find it
challenging to understand complex code scripts. More-
over, identifying specific parameters buried in the code
and finding out how to change these can be a daunting
task. The concept of nano-publications [49] or bindings
[29] might help to solve these issues. A further need in
this context is a UI for comparing original and manipu-
lated figures, since differences in the figure after chan-
ging parameters might be difficult to spot. Most
applications do not provide any support for substituting
research components, e.g., by other input datasets, which
might be due to the plethora of complex interoperability
issues with respect to data formats or column names in
tabular data. Only ReproZip [32] and o2r [36] provide
basic means to substitute input datasets, yet they require
users to ensure compatibility.
Researchers who are writing or studying computa-

tional research articles might be programming beginners
or experts. Hence, while the learning curve may be ei-
ther shallow or steep, it is present in any case. Although
the applications are well documented, programming
novices in particular might need to invest effort at the
beginning of use. For example, they would need to learn
how to write R Markdown documents and create config-
uration files manually. Some of the creation steps might
be automated, but this usually comes at the cost of flexi-
bility. The learning curve not only exists for authors but
also for consumers, particularly reviewers who need to
verify the results and those who want to build upon the
materials. Nevertheless, such an effort only needs to be
invested once and will eventually result in more convin-
cing and transparent research.

Sharing computational research
The state of the research materials is an issue when it
comes to publication. While some applications fix the
state of the research materials by assigning a DOI and
archiving a snapshot, others allow changing and deleting
them. This is a disadvantage with respect to reproduci-
bility since verifiability and accessibility are lost. In
addition, if self-hosting is not possible, the

6Anonymized links: https://help.osf.io/hc/en-us/articles/360019930333-
Create-a-View-only-Link-for-a-Project

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 6 of 8

https://choosealicense.com/
https://help.osf.io/hc/en-us/articles/360019930333-Create-a-View-only-Link-for-a-Project
https://help.osf.io/hc/en-us/articles/360019930333-Create-a-View-only-Link-for-a-Project

computational analysis of an article will be executable
only as long as the project and its infrastructure exist;
this dependence is a crucial aspect with respect to ar-
chiving. However, this issue can be mitigated if re-
searchers “go the extra mile” and also publish their
materials in long-term repositories in addition to an exe-
cutable version using one of the applications.
A further dependence is the technology underlying the

infrastructure. For example, without the Docker con-
tainer runtime, the captured computing environment
might not work even though it remains human readable
[50]. This is also true for source code scripts, which are
plain text files and, thus, can be opened using any editor,
even if they cannot be compiled and executed. These ex-
amples demonstrate the importance of using open and
text-based file formats instead of proprietary and binary
file formats in science.

Limitations
This work is subject to a number of limitations. The
scope of this review is narrow and does not cover all ap-
plications that are connected with computational re-
search (e.g., workflow systems, such as Taverna [23]).
Also, we have no access to publishers’ actual systems,
preventing us from being able to evaluate the usability of
APIs and documentation and how easy they can be in-
corporated into existing infrastructures. In addition, this
review is a snapshot of the highly dynamic area of pub-
lishing infrastructures. Hence, the information might be-
come outdated quickly, e.g., an application might extend
the set of functionalities or be discontinued. Still, review-
ing the current state of the landscape to reflect on avail-
able options might be helpful for researchers.
Furthermore, the properties we investigated in this sur-
vey do not cover all possible aspects and discipline-
specific needs, but, nevertheless, stakeholders requiring
more information can use the overview as a starting
point for further research. Also, we collected and inter-
preted the data ourselves and did not contact the appli-
cation developers, which might have increased the
accuracy of the data. Finally, our evaluation only consid-
ered documented features. However, programmers with
sufficient expertise can build upon the open source ap-
plications and implement missing features.

Conclusions
In this review, we compared eleven applications in order
to identify their benefits and limitations for assisting re-
searchers to publish and study open reproducible re-
search. Our findings show that publishers have the
choice between using provided services or self-hosting
solutions, but more data is needed to estimate the costs
for publishers to maintain their own infrastructure. The
review revealed a trend towards literate programming

approaches as well as tools for reviewers and readers,
e.g., for inspecting an analysis or manipulating the as-
sumptions underlying the analysis. We found that being
able to change the materials after publication might re-
sult in conflicts between the version referred to in an
article and the available version, which might have been
changed since the article was first published. In addition
to investigating these issues, the next step is to examine
how using an application affects a reviewer’s decision
and how much additional effort is needed to study the
materials.

Abbreviations
CLI : Command line interface; DOI : Digital Object Identifier; o2r : Opening
reproducible research (project); ORR : Open reproducible researchers; REANA
: Reproducible Analysis (project); RDS : Reproducibility Document Stack; UI
: User Interface

Acknowledgements
We thank Timothy Errington and Mario Malicki for their reviews, Vicky
Steeves for a helpful discussion on the article preprint [39], and Celeste
Brennecka for proofreading.

Authors’ contributions
Markus Konkol wrote the paper, collected the data, and conceptualized the
analysis. Daniel Nüst wrote the paper. Laura Goullier collected data and wrote
the paper. All authors discussed the results and approved the final manuscript.

Funding
This work is supported by the project Opening Reproducible Research 2
(https://www.uni-muenster.de/forschungaz/project/12343) funded by the
German Research Foundation (DFG) under project numbers KR 3930/8–1; TR
864/12–1; PE 1632/17–1. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
The data is openly available on Zenodo: https://doi.org/10.5281/zenodo.
3562269. The repository includes a list of all applications we looked at and,
for excluded applications, the reasons for exclusion.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors of this paper are members of the o2r project that was also
discussed in this paper (http://o2r.info/).

Received: 5 March 2020 Accepted: 24 June 2020

References
1. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al.

Enhancing reproducibility for computational methods. Science. 2016;
354(6317):1240–1. https://doi.org/10.1126/science.aah6168.

2. Stagge JH, Rosenberg DE, Abdallah AM, Akbar H, Attallah NA, James R.
Assessing data availability and research reproducibility in hydrology and
water resources. Sci Data. 2019;6(1). https://doi.org/10.1038/sdata.2019.30.

3. Nüst D, Granell C, Hofer B, Konkol M, Ostermann FO, Sileryte R, Cerutti V.
Reproducible research and GIScience: an evaluation using AGILE conference
papers. PeerJ. 2018;6:e5072. https://doi.org/10.7287/peerj.preprints.26561.

4. Chen X, Dallmeier-Tiessen S, Dasler R, Feger S, Fokianos P, Benito Gonzalez
J, Hirvonsalo H, et al. Open is not enough. Nat Phys. 2018;15(2):113–9.
https://doi.org/10.1038/s41567-018-0342-2.

5. Konkol M, Kray C, Pfeiffer M. Computational reproducibility in geoscientific
papers: insights from a series of studies with geoscientists and a

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 7 of 8

https://www.uni-muenster.de/forschungaz/project/12343
https://doi.org/10.5281/zenodo.3562269
https://doi.org/10.5281/zenodo.3562269
http://o2r.info/
https://doi.org/10.1126/science.aah6168
https://doi.org/10.1038/sdata.2019.30
https://doi.org/10.7287/peerj.preprints.26561
https://doi.org/10.1038/s41567-018-0342-2

reproduction study. Int J Geogr Inf Sci. 2018;33(2):408–29. https://doi.org/1
0.1080/13658816.2018.1508687.

6. Herndon T, Ash M, Pollin R. Does high public debt consistently stifle
economic growth? A critique of Reinhart and Rogoff. Camb J Econ. 2013;
38(2):257–79. https://doi.org/10.1093/cje/bet075.

7. National Academies of Sciences, Engineering, Medicine & others.
Reproducibility and Replicability in science. Washington, DC.: National
Academies Press; 2019. https://doi.org/10.17226/25303.

8. Markowetz F. Five selfish reasons to work reproducibly. Genome Biol. 2015;
16(1). https://doi.org/10.1186/s13059-015-0850-7.

9. McKiernan EC, Bourne PE, Brown CT, Buck S, Kenall A, Lin J, Yarkoni T.
Author response: how open science helps researchers succeed. 2016
https://doi.org/10.7554/elife.16800.008.

10. Stark PB. Before reproducibility must come preproducibility. Nature. 2018;
557(7707):613. https://doi.org/10.1038/d41586-018-05256-0.

11. Vazire S. A toast to the error detectors. Nature. 2020.
12. Bailey DH, Borwein JM, Stodden V. Facilitating reproducibility in scientific

computing: principles and practice. Reproducibility. 2016:205–31. https://
doi.org/10.1002/9781118865064.ch9.

13. Donoho DL. An invitation to reproducible computational research.
Biostatistics. 2010;11(3):385–8. https://doi.org/10.1093/biostatistics/kxq028.

14. Powers SM, Hampton SE. Open science, reproducibility, and transparency in
ecology. Ecol Appl. 2018;29(1). https://doi.org/10.1002/eap.1822.

15. Piwowar H. Sharing detailed research data is associated with increased
citation rate. Nat Preced. 2007. https://doi.org/10.1038/npre.2007.361.1.

16. Nüst D, Ostermann FO. Sileryte R, Hofer B, Granell C, Teperek M, Graser A,
Broman KW, Hettne KM. (2019). AGILE reproducible paper guidelines.
https://doi.org/10.17605/OSF.IO/CB7Z8.

17. Hrynaszkiewicz I. Publishers’ responsibilities in promoting data quality and
reproducibility. Handb Exp Pharmacol. 2019. https://doi.org/10.1007/164_
2019_290.

18. Gentleman R, Temple Lang D. Statistical analyses and reproducible research.
J Comput Graph Stat. 2007;16(1):1–23. https://doi.org/10.1198/
106186007x178663.

19. Barba LA. Terminologies for reproducible research. arXiv preprint arXiv:1802.
03311; 2018.

20. Munafò MR, Nosek BA, Bishop D, Button KS, Chambers CD, Sert NP,
Simonsohn U, Wagenmakers E-J, Ware JJ, Ioannidis JPA. A manifesto for
reproducible science. Nat Hum Behav. 2017;1(1). https://doi.org/10.1038/
s41562-016-0021.

21. Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ,
et al. Promoting an open research culture. Science. 2015;348(6242):
1422–5.

22. Nüst D, Konkol M, Pebesma E, Kray C, Schutzeichel M, Przibytzin H, Lorenz J.
Opening the publication process with executable research compendia. D-
Lib Magazine. 2017;23(1/2). https://doi.org/10.1045/january2017-nuest.

23. Wolstencroft K, Haines R, Fellows D, Williams A, Withers D, Owen S, et al.
The Taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud. Nucleic Acids Res. 2013;
41(W1):W557–61. https://doi.org/10.1093/nar/gkt328.

24. Jupyter P, Bussonnier M, Forde J, Freeman J, Granger B, Head T, Willing C.
Binder 2.0 - reproducible, interactive, sharable environments for science at
scale. Proceedings of the 17th Python in Science Conference. 2018. https://
doi.org/10.25080/majora-4af1f417-011.

25. Clyburne-Sherin A, Fei X, Green SA. Computational reproducibility via
Containers in Social Psychology. Meta-Psychology 3. 2019. https://doi.org/
10.15626/MP.2018.892.

26. Goecks J, Nekrutenko A, Taylor J, Galaxy Team T. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol. 2010;11(8):R86.
https://doi.org/10.1186/gb-2010-11-8-r86.

27. Grüning BA, Rasche E, Rebolledo-Jaramillo B, Eberhard C, Houwaart T,
Chilton J, et al. Jupyter and Galaxy: easing entry barriers into complex data
analyses for biomedical researchers. PLoS Comput Biol. 2017;13(5):e1005425.
https://doi.org/10.1371/journal.pcbi.1005425.

28. Nüst D. Reproducibility Service for Executable Research Compendia:
technical specifications and reference implementation (version 1.0.0).
Zenodo.2018. https://doi.org/10.5281/zenodo.2203844.

29. Konkol M, Kray C, Suleiman J. Creating interactive scientific publications
using bindings. Proceedings of the ACM on Human-Computer
Interaction,2019:1–18. https://doi.org/10.1145/3331158.

30. Šimko T, Heinrich L, Hirvonsalo H, Kousidis D, Rodríguez D. REANA: a system
for reusable research data analyses. EPJ Web Conf. 2019;214:06034. https://
doi.org/10.1051/epjconf/201921406034.

31. Steeves V, Rampin R, Chirigati F. Using ReproZip for reproducibility and
library services. IASSIST Quarterly. 2017;42(1):14. https://doi.org/10.29173/
iq18.

32. Chirigati F, Doraiswamy H, Damoulas T, Freire J. Data polygamy.
Proceedings of the 2016 International Conference on Management of Data
- SIGMOD ‘16. 2016. https://doi.org/10.1145/2882903.2915245.

33. Rampin R, Chirigati F, Steeves V, Freire J. ReproServer: making reproducibility
easier and less intensive. arXiv Preprint arXiv:1808.01406; 2018.

34. Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, Stodden
V, Turner K, et al. Computing environments for reproducibility: Capturing
the “Whole Tale”. Futur Gener Comput Syst. 2019;94:854–67. https://doi.
org/10.1016/j.future.2017.12.029.

35. Peng RD, Dominici F, Zeger SL. Reproducible epidemiologic research. Am J
Epidemiol. 2006;163(9):783–9.

36. Konkol M, Kray C. In-depth examination of spatiotemporal figures in open
reproducible research. Cartogr Geogr Inf Sci. 2018;46(5):412–27. https://doi.
org/10.1080/15230406.2018.1512421.

37. Stodden V. The legal framework for reproducible scientific research:
licensing and copyright. Comput Sci Eng. 2009;11(1):35–40. https://doi.org/
10.1109/mcse.2009.19.

38. Sayre F, Riegelman A. Replicable Services for Reproducible Research: a
model for academic libraries. Coll Res Libraries. 2019;80(2):260. https://doi.
org/10.5860/crl.80.2.260.

39. Konkol M, Nüst D, Goulier L. Publishing computational research - a review
of infrastructures for reproducible and transparent scholarly communication.
arXiv preprint arXivarXiv:2001.00484; 2020.

40. Hanwell MD, Harris C, Genova A, et al. Open chemistry, JupyterLab, REST,
and quantum chemistry. Authorea. 2020. https://doi.org/10.22541/au.
158687268.81852407.

41. Chitre M. Editorial on writing reproducible and interactive papers. IEEE J
Ocean Eng. 2018;43(3):560–2. https://doi.org/10.1109/joe.2018.2848058.

42. Lewis LM, Edwards MC, Meyers ZR, Talbot Jr, CC, Hao H, Blum D. Replication
Study: Transcriptional Amplification in Tumor Cells with Elevated c-Myc
Cancer Biol 7. 2018. https://doi.org/10.7554/eLife.30274.

43. Ide N, Suderman K, Verhagen M, Pustejovsky J. The language application
grid web service exchange vocabulary. Lect Notes Comput Sci. 2016:18–32.
https://doi.org/10.1007/978-3-319-31468-6_2.

44. Prelipcean D. Physics examples for reproducible analysis. CERN. 2019.
https://cds.cern.ch/record/2690231.

45. Eglen S, Nüst D. CODECHECK: an open-science initiative to facilitate sharing
of computer programs and results presented in scientific publications.
Septentrio Conf Series. 2019;1. https://doi.org/10.7557/5.4910.

46. Grüning B, Chilton J, Köster J, Dale R, Soranzo N, van den Beek M, et al.
Practical computational reproducibility in the life sciences. Cell Syst. 2018;
6(6):631–5. https://doi.org/10.1016/j.cels.2018.03.014.

47. Pérignon C, Gadouche K, Hurlin C, Silberman R, Debonnel E. Certify
reproducibility with confidential data. Science. 2019;365(6449). https://doi.
org/10.1126/science.aaw2825.

48. Foster I. Research infrastructure for the safe analysis of sensitive data. Ann
Am Acad Political Soc Sci. 2017;675(1):102–20. https://doi.org/10.1177/
0002716217742610.

49. Kuhn T, Chichester C, Krauthammer M, Queralt-Rosinach N, Verborgh R,
Giannakopoulos G, et al. Decentralized provenance-aware publishing with
nanopublications. PeerJ Comp Sci. 2016;2:e78. https://doi.org/10.7717/peerj-
cs.78.

50. Boettiger C. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Syst Rev. 2015;49(1):71–9. https://doi.org/10.1145/
2723872.2723882.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Konkol et al. Research Integrity and Peer Review (2020) 5:10 Page 8 of 8

https://doi.org/10.1080/13658816.2018.1508687
https://doi.org/10.1080/13658816.2018.1508687
https://doi.org/10.1093/cje/bet075
https://doi.org/10.17226/25303
https://doi.org/10.1186/s13059-015-0850-7
https://doi.org/10.7554/elife.16800.008
https://doi.org/10.1038/d41586-018-05256-0
https://doi.org/10.1002/9781118865064.ch9
https://doi.org/10.1002/9781118865064.ch9
https://doi.org/10.1093/biostatistics/kxq028
https://doi.org/10.1002/eap.1822
https://doi.org/10.1038/npre.2007.361.1
https://doi.org/10.17605/OSF.IO/CB7Z8
https://doi.org/10.1007/164_2019_290
https://doi.org/10.1007/164_2019_290
https://doi.org/10.1198/106186007x178663
https://doi.org/10.1198/106186007x178663
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1045/january2017-nuest
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.25080/majora-4af1f417-011
https://doi.org/10.25080/majora-4af1f417-011
https://doi.org/10.15626/MP.2018.892
https://doi.org/10.15626/MP.2018.892
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1371/journal.pcbi.1005425
https://doi.org/10.5281/zenodo.2203844
https://doi.org/10.1145/3331158
https://doi.org/10.1051/epjconf/201921406034
https://doi.org/10.1051/epjconf/201921406034
https://doi.org/10.29173/iq18
https://doi.org/10.29173/iq18
https://doi.org/10.1145/2882903.2915245
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.1016/j.future.2017.12.029
https://doi.org/10.1080/15230406.2018.1512421
https://doi.org/10.1080/15230406.2018.1512421
https://doi.org/10.1109/mcse.2009.19
https://doi.org/10.1109/mcse.2009.19
https://doi.org/10.5860/crl.80.2.260
https://doi.org/10.5860/crl.80.2.260
https://doi.org/10.22541/au.158687268.81852407
https://doi.org/10.22541/au.158687268.81852407
https://doi.org/10.1109/joe.2018.2848058
https://doi.org/10.7554/eLife.30274
https://doi.org/10.1007/978-3-319-31468-6_2
https://cds.cern.ch/record/2690231
https://doi.org/10.7557/5.4910
https://doi.org/10.1016/j.cels.2018.03.014
https://doi.org/10.1126/science.aaw2825
https://doi.org/10.1126/science.aaw2825
https://doi.org/10.1177/0002716217742610
https://doi.org/10.1177/0002716217742610
https://doi.org/10.7717/peerj-cs.78
https://doi.org/10.7717/peerj-cs.78
https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1145/2723872.2723882

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study design
	Sample
	Variables
	Data collection

	Results
	Discussion
	Hosting of the applications
	Creating executable analyses
	Studying reproducible research
	Sharing computational research
	Limitations

	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

